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Abstract

Ensuring the robustness of detection systems employing computer vision models requires that we

understand visual cues that these models rely on for pedestrian detection. This project explores

the interpretability of pedestrian detection by using a Faster R-CNN and the Caltech Pedestrian

Dataset. First, we use masking to determine that the model does depend on some form of visual

cues. Then, we examine the the illumination of the pedestrians themselves as a visual cue and, as a

complement, the effect of two potential non-pedestrian visual cues, sidewalks and crosswalks, on

detection. Finally, based on the observed effects, we manipulate the weights in the training loss to

reduce the model’s dependence on sidewalks and crosswalks and achieve improved results.

1. Introduction

Within the past decade, convolutional neural networks (CNNs) have become a popular tool for

computer vision problems such as pedestrian detection. However, CNNs are often treated as a "black

box" in the sense that while they can perform a task well, we gain little insight into how the network

internally approaches the task. This trend is especially true for deeper and more complex CNNs

which have millions of parameters. Many automated vision systems rely on these complex CNNs to

perform object detection. In general, a comprehensive understanding of how CNNs detect an object

exposes a model’s shortcomings and can point to methods to overcome those shortcomings. For

pedestrian detection in particular, understanding how automated vision systems in self-driving cars

detect pedestrians could help reduce automobile accidents and potentially save lives.

Our project targets this problem of interpretability, how a model learns from a dataset, in

pedestrian detection. More specifically, we seek to understand what visual cues, if any, object

detection models use to detect pedestrians. First, we determine whether or not the model relies on



any visual cues. Then, we examine the effect of illumination of pedestrians on detection. Finally,

we examine the effect of the presence of two particular non-pedestrian objects: sidewalks and

crosswalks. Based on our results from these experiments, we then introduce an improvement on the

model by manipulating the training loss weights.

2. Related Work

A related study [4] focuses on the relation between pedestrian skin tones and detection and concludes

that object detection systems in autonomous vehicles perform worse on pedestrians with darker skin

tones than other pedestrians. Similarly, this project examines the effect of pedestrian illumination.

We group pedestrians into categories of illumination just as the skin tone study groups pedestrians

into categories of skin tone based on the Fitzpatrick scale [4]. However, rather than manually

categorizing the pedestrians based on skin tone, we automatically categorize pedestrians based

on the median pixel value within their bounding boxes. As a result, our categories incorporate

illumination and clothing with skin tone.

Another study [3] builds and uses a dataset of images captured at night to investigate pedestrian

illumination in a nighttime setting. This study concludes that detection of pedestrians during the

night is more difficult than detection during the day. However, even pedestrians in daylight can be

low-lit (Fig. 1), and our project explores the effect of pedestrian illumination in such settings.

Figure 1: A low-lit pedestrian during the daytime.
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3. Normalized Average Precision

In two of our experiments, we split the images in our dataset into categories based on a characteristic

chosen for the experiment and run inference on each category. As a result, the total number of

pedestrians varies between categories. This imbalance could invalidate a direct comparison of the

average precisions across categories. Instead, we use normalized average precision (APN) [2].

For a given confidence level c, precision is typically calculated as shown in Eq. 1.

P(c) =
R(c) ·N j

R(c) ·N j +F(c)
(1)

where N j is the number of objects in class j (equivalently the number of pedestrians in a category),

R(c) is the recall (i.e., the fraction of all objects detected), and F(c) is the number of false positives.

However, for the same detection rate and false positive rate, the precision would be higher for larger

N j than for lower N j. To mitigate this issue, we use normalized average precision (APN), which

replaces N j with a constant N to normalize the precision (Eq. 2) [2].

P(c) =
R(c) ·N

R(c) ·N +F(c)
(2)

where N is the average N j over all categories being compared (Eq. 3).

N =
1
n

n

∑
i=1

Ni (3)

Categories of images with similar detection rates and false positive rates will have similar APN

values.

4. Baseline Model

Before conducting our experiments, we fine-tuned a Faster R-CNN model [5] that had been pre-

trained on COCO 2017 on the Caltech Pedestrian Dataset [1]. We used a Faster R-CNN because it

is a popular object detection model. The full dataset contains about 250,000 frames of videos of
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several drives through areas in the Los Angeles metropolitan area. However, due to storage and

computational constraints, we reduced the dataset size by randomly sampling 1,100 frames. We

then split the data into 700 training images, 200 validation images, and 200 test images.

For evaluation, we combine our validation and test images because we want to increase the

number of images for evaluation without disrupting the proportional split and without exceeding

our contraints. On the combined validation and test set, the model reaches a mean APN of 27.13,

with a 95% confidence interval of [24.63, 29.63]. After inspecting the images in the dataset, we

found a few ambiguous bounding boxes that only outlined cars that the model would likely, and

rationally, not identify as pedestrians; these situations likely caused a lower average precision.

5. Determining the Existence of Visual Cues

5.1. Implementation

First, we determine if the model depends on any visual cues to detect pedestrians. These cues could

be other objects in the image, such as sidewalks or crosswalks, or characteristics of the pedestrians

themselves, such as illumination of the pedestrian. However, this experiment specifically determines

the existence of visual cues; the later experiments (Sections 6 and 7) explore certain types of visual

cues. Our implementation is as follows:

1. Generate images with masked non-pedestrian pixels

For each image in our combined validation and test set, we set pixels that are not within the

bounding box of any pedestrian to zero (Fig. 2).

2. Run inference on masked images

We run inference on the masked set with our trained model and save the normalized average

precision of each image for evaluation.

5.2. Evaluation and Analysis

Since we generate the masked images from the combined validation and test images, the combined

validation and test set contains the same number of pedestrians as the masked set. That is, both sets
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Figure 2: An image with non-pedestrian pixels masked out.

each contain 859 instances of pedestrians. Thus, to calculate the APN values, we use N = 859. This

achieves the same effect as using non-normalized AP. On the masked images, the model reaches a

mean APN of 12.93, with a 95% confidence interval of [10.69, 15.12].

We perform a two-sample t-test to determine if the sample mean of the APN values on the original

images (i.e., baseline) is equal to the sample mean of the APN values on the masked images.

At the 5% significance level, there is a statistically significant difference in the mean APN values

between the original and the masked images; the 95% confidence interval for the difference in

means does not contain 0, and the p-value is lower than 0.05 (Table 1). Thus, we conclude that the

model does indeed rely on visual cues to detect pedestrians.

T statistic DF p-value Difference in means 95% confidence interval
8.314 788.557 4.023e-16 14.201 [10.848, 17.553]

Table 1: APN comparison between the combined validation and test images and the corresponding
masked images.
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6. Exploring the Effect of Pedestrian Illumination

6.1. Implementation

Now that we have determined that external visual cues do exist, we next examine the effect of the

pedestrians themselves on the model’s ability to detect them. Specifically, we examine the effect of

illumination – how brightly lit the pedestrian is. Our implementation is as follows:

1. Categorize pedestrians into illumination categories

We categorize each pedestrian based on a median pixel value that we calculate from a sub-

region within the pedestrian bounding box. Specifically, we obtain each sub-region by vertically

cropping the middle third of the box and then horizontally cropping the middle half (Fig. 3).

Then, for each pedestrian we calculate the median pixel value of the cropped section. If the

median pixel value is greater than 100, we place the image containing the pedestrian into the

lower illumination category; otherwise, we place the image into the higher illumination category.

Fig. 4 and Fig. 5 show example images with lower-lit and higher-lit pedestrians. If an image

contains both a highly-illuminated pedestrian and a lowly-illuminated pedestrian, we discard the

image because we want to compare the model’s performance on distinct categories.

We use sub-regions rather than the entire bounding boxes to account for a situation where a lower

illumination pedestrian is present against a highly illuminated background (e.g., a pedestrian

when the sun is behind them); we would want to place this pedestrian in the lower illumination

category. In this sense, clothing and skin tone can contribute to illumination as well as sunlight.

2. Run inference on each category

We run inference separately on each category with our trained model and save the normalized

average precision of each image for evaluation.
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Figure 3: An example sub-region of a pedestrian bounding box.

Figure 4: Lower-lit pedestrians. Figure 5: Higher-lit pedestrians.

6.2. Evaluation and Analysis

To calculate the APN values, we used N = 519 which is the average N j over the two categories (Eq.

4).

N =
1
2
(Nlower +Nhigher) (4)

The mean APN for the images in the lower illumination category was 10.62, with a 95% confi-

dence interval of [8.24, 13.00]. The mean APN for the images in the higher illumination category
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was 12.29, with a 95% confidence interval of [9.19, 15.39].

We perform a two-sample t-test to determine if the sample mean of the APN values on the

lower-illuminated images is equal to the sample mean of the APN values on the higher-illuminated

images.

At the 5% significance level, there exists no statistically significant difference between the mean

APN values of lower- and higher-lit pedestrians (Table 2). We theorize that this trend occurs because

the model relies more on the strength of pedestrian outlines (i.e., contrast with background) than

illumination.

T statistic DF p-value Difference in means 95% confidence interval
-0.841 358.309 0.401 -1.667 [-5.565, 2.231]

Table 2: APN comparison between images with lower- and higher-lit pedestrians.

7. Exploring the Effect of Sidewalk and Crosswalk Presence

7.1. Implementation

As a complement to the intra-pedestrian visual cue examined in the previous experiment, we next

examine the effect of two potential non-pedestrian visual cues: sidewalks and crosswalks. Our

implementation is as follows:

1. Categorize pedestrians into Sidewalk, Crosswalk, and None

We manually categorize the images into three categories: images with pedestrians on sidewalks,

images with pedestrians on crosswalks, and images with pedestrians on neither sidewalks nor

crosswalks (Fig. 6). We refer to an image from each category as a Sidewalk image, Crosswalk

image, and None image respectively. If an image falls into more than one category, such as an

image containing both a pedestrian on a sidewalk and a pedestrian on a crosswalk, we discard

the image because we want to compare the model’s performance on distinct categories.

Furthermore, we categorize the training set and combined validation and test set separately.

That is, we obtain six sets in total: Training Sidewalk images, Training Crosswalk images,
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Training None images, Validation/Test Sidewalk images, Validation/Test Crosswalk images, and

Validation/Test None images. In this experiment, we use the Validation/Test sets.

Figure 6: Sidewalk image (left), Crosswalk image (middle), None image (right).

2. Run inference on each category

We run inference separately on each category with our trained model and save the normalized

average precision of each image for evaluation.

7.2. Evaluation and Analysis

To calculate the APN values, we used N = 248.67 which is the average N j over the three categories

(Eq. 5).

N =
1
3
(Nsidewalk +Ncrosswalk +Nnone) (5)

On Sidewalk images, Crosswalk images, and None images, the model reaches a mean APN of

44.54, 49.12, and 33.44, with 95% confidence intervals of [40.24, 48.82], [41.43, 56.80], [23.45,

43.43], respectively.

We perform a two-sample t-test to compare the sample mean of the APN values on the Sidewalk

images, the sample mean of the APN values on the Crosswalk images, and the sample mean of the

APN values on the None images.

At the 5% significance level, there exists no statistically significant difference in the mean APN

values between Sidewalk images and Crosswalk images (Table 3). However, there does exist a

statistically significant difference in the mean APN values between Sidewalk images and None

images (Table 4), as well as between Crosswalk images and None images (Table 5).
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Thus, we conclude that the presence of sidewalks and crosswalks has a significant effect on

pedestrian detection.

T statistic DF p-value Difference in means 95% confidence interval
-1.052 56.351 0.297 -4.580 [-13.300, 4.140]

Table 3: APN comparison between Sidewalk images and Crosswalk images.

T statistic DF p-value Difference in means 95% confidence interval
2.561 45.835 0.014 15.675 [3.354, 27.996]

Table 4: APN comparison between Sidewalk images and None images.

T statistic DF p-value Difference in means 95% confidence interval
2.101 31.522 0.044 11.095 [0.334, 21.855]

Table 5: APN comparison between Crosswalk images and None images.

8. Improvement on the Model: Manipulating the Training Loss

8.1. Implementation

Since the model performs significantly worse on images of pedestrians positioned on neither a

sidewalk nor a crosswalk, we introduce a change in the training loss calculation such that if the

model encounters such an image, the training loss weight for that image increases. If the model

encounters any other image, the model uses the default weighting.

Specifically, we modify the code to scale the training loss by 1.5 when the model encounters a

None image in the training set (previously referred to as Training None). We then re-train the Faster

R-CNN model starting from the original COCO 2017 pre-trained state and run inference on the

Sidewalk, Crosswalk, and None categories just as in Section 7.

Before training the model, we use the previously categorized Training None images to generate a

text file of a list of the file names of Training None images. Then, the steps of our modifications

during an iteration of training are as follows:
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1. Write current image name

At the beginning of the iteration, the model writes the name of the current image file into a text

file.

2. Check if Training None image

During the calculation of training loss for the current image, the model reads the current image

name and the list of Training None image names from the corresponding text files. The model

then checks if the list of Training None image names contains the current image name.

3. If Training None image, scale the loss by 1.5

If the list of Training None image names contains the current image name, multiply the training

loss and default weight by 1.5.

4. Otherwise, leave the loss unchanged

If the list of Training None image names does not contain the current image name, leave the

training loss weight unchanged.

In this modification, the weight becomes a hyperparameter that one can tune. We initially tried

doubling the loss; however, we found that doing so causes the model to ultimately perform worse so

we reduced the scale to 1.5.

8.2. Evaluation and Analysis

We perform a two-sample t-test identical to the one presented in section 7.

To calculate the APN values, we used N = 248.67 which is the average N j over the three categories

(Eq. 6).

N =
1
3
(Nsidewalk +Ncrosswalk +Nnone) (6)

On Sidewalk images, Crosswalk images, and None images, the re-trained model reaches a mean

APN of 43.71, 52.15, and 36.90, with 95% confidence intervals of [39.64, 47.78], [43.43, 60.87],

[26.51, 47.28], respectively. These metrics demonstrate a decrease of 0.83 for Sidewalk, an increase

of 3.03 for Crosswalk, and an increase of 3.46 for None.

We perform a two-sample t-test to compare the sample mean of the APN values on the Sidewalk
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images, the sample mean of the APN values on the Crosswalk images, and the sample mean of the

APN values on the None images.

At the 5% significance level, there still exists no statistically significant difference in the mean

APN values between sidewalk images and crosswalk images (Table 6). Additionally, there still does

exist a statistically significant difference in the mean APN values between Crosswalk images and

None images (Table 7). However, there no longer exists a statistically significant difference in the

mean APN values between Sidewalk images and None images (Table 8).

This reduction in the difference between the model’s performance on Sidewalk images and

None images suggests that the model became more familiar with pedestrians positioned on neither

sidewalks nor crosswalks. Thus, we conclude that up-weighting None images in the training loss

decreases the model’s reliance on sidewalks as a visual cue for pedestrians.

T statistic DF p-value Difference in means 95% confidence interval
-1.776 49.075 0.082 -8.440 [-17.988, 1.108]

Table 6: APN comparison between Sidewalk images and Crosswalk images for the re-trained model.

T statistic DF p-value Difference in means 95% confidence interval
1.258 29.837 0.218 6.810 [-4.247, 17.866]

Table 7: APN comparison between Sidewalk images and None images for the re-trained model.

T statistic DF p-value Difference in means 95% confidence interval
2.314 48.627 0.025 15.250 [2.002, 28.499]

Table 8: APN comparison between Crosswalk images and None images for the re-trained model.

9. Conclusion

In conclusion, our experiments show that the model does indeed depend on visual cues to detect

pedestrians. Our modification to the training loss weights effectively reduced the model’s reliance

on sidewalks as a visual cue, and we believe that further hyperparameter tuning and increased

storage and computational power could reduce the model’s dependence on crosswalks as well.
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Though we specifically experimented with a Faster R-CNN, our approach applies to any object

detection model.

Before performing the experiments, we thought that masking the non-pedestrian portions of

the images would worsen the performance of the model. Our analysis of inference on masked

images suggests that this hypothesis is indeed true. Furthermore, we thought that the model would

detect pedestrians positioned on a crosswalk or sidewalk more often than pedestrians standing on

the middle of a road. Our comparison between inference on images of pedestrians on crosswalks,

sidewalks, and neither crosswalks nor sidewalks suggests that this trend is true and reinforces one

of the initial motivations for this project which is ensuring the robustness of a car’s visual detection

system despite a lack of crosswalks and sidewalks. Based on the study done on pedestrian skin

tones, we thought that the model would detect highly-lit pedestrians better than low-lit pedestrians.

However, the model performs similarly on pedestrians of either illumination level.

The main caveats to our implementation came from the quality of the dataset. Some images in

the Caltech Pedestrian Dataset contain ambiguous bounding boxes – bounding boxes where the

pedestrian is very difficult to detect, or missing entirely, in which case the pedestrian would be

unreasonable to detect. For example, the rightmost bounding box in Fig. 7 contains part of a car

rather than a distinguishable pedestrian. During inference, the model sometimes does not detect

pedestrians within these ambiguous boxes which penalizes the AP during evaluation. One way to

mitigate this penalty is by introducing a label named "ambiguous" for these types of boxes and

having the evaluation ignore the presence or lack of the detection of bounding boxes labeled as

"ambiguous". Furthermore, the images in this dataset came from drives "through neighborhoods

in the greater Los Angeles metropolitan area chosen for their relatively high concentration of

pedestrians" [1]. Thus, most, if not all, of the images depict paved roads and contain objects

found in urban settings. However, even within the U.S., there exist dirt and farm roads that many

people use on a daily basis, so models trained on this dataset may be biased against such situations.

Therefore, it would be interesting to see if our conclusions translate to these types of settings.
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Figure 7: An ambiguous bounding box.
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