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Abstract

Explanations for computer vision models are important tools for
interpreting how the underlying models work. However, they are
often presented in static formats, which pose challenges for users,
including information overload, a gap between semantic and pixel-
level information, and limited opportunities for exploration. We
investigate interactivity as a mechanism for tackling these issues in
three common explanation types: heatmap-based, concept-based,
and prototype-based explanations. We conducted a study (N=24),
using a bird identification task, involving participants with diverse
technical and domain expertise. We found that while interactivity
enhances user control, facilitates rapid convergence to relevant
information, and allows users to expand their understanding of
the model and explanation, it also introduces new challenges. To
address these, we provide design recommendations for interactive
computer vision explanations, including carefully selected default
views, independent input controls, and constrained output spaces.
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1 Introduction

AT explanations help users understand and diagnose complex Al
models, such as modern computer vision (CV) models processing
thousands of pixels [1, 5]. While the explainable AI (XAI) commu-
nity has developed many explanation methods, they often present
information in a static form which can be challenging for users to
interpret [10, 38,42, 47, 69, 91]. Moreover, a single static explanation
cannot meet the diverse needs of users with varying expertise [49].

Most XAI methods produce static CV explanations [14, 16, 27, 45,
67,70, 71, 73, 74, 76, 77, 93, 95, 97]. However, recent studies have
identified several challenges with static explanations [10, 38, 42, 47,
69, 91] which we categorize into three groups:

(1) Information overload: Users feel that there is too much
information to process at once [10, 38, 42, 47, 69, 91].

(2) Semantic-pixel gap: Users find it difficult to connect image
pixels to objects, attributes, and abstract concepts [10, 42, 69].

(3) Limited exploration: Users lack the necessary tools to
probe the explanation to deepen their understanding [42].

Prior work in Information Visualization has shown that inter-
acting with data helps with interpretation [30, 36, 44, 92], and con-
sequently, several works have called for interactivity in XAI appli-
cations [30, 48, 65, 80, 83, 84]. However, interactivity has mostly
been explored at the dataset level [7, 11, 22, 26, 30, 89, 92], for vi-
sualizing model weights [15, 22, 31, 35, 90], and for non-visual data
[8, 9, 50, 80]. In this work, we explore interactivity at the expla-
nation level for images. Specifically, we investigate two research
questions: RQ1: How do end-users leverage interactivity to help
understand information conveyed by CV explanations? RQ2: How
do end-users perceive interactive CV explanations?
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To answer these questions, we conducted a within-subjects study
using explanations for a bird identification model [88]. We selected
bird identification over common object or scene classification use
cases [20, 96] to examine the effects of domain knowledge. We
focused on three widely used explanation types (heatmap-based,
concept-based, and prototype-based explanations) and investigated
three interactive mechanisms: Filtering to control the amount of
information, Overlays to connect pixel-level landmarks to seman-
tic labels, and Counterfactuals to allow users to edit images and
observe a change in the explanation. We recruited 24 participants
with varying levels of machine learning (ML) and birding expertise
for an ~ 90-minute study. Each participant completed a set of tasks,
alongside a questionnaire and interview.

We found that interactivity addresses some limitations of static
CV explanations by providing users with tools to bridge the semantic-
pixel gap, rapidly pinpoint the information they seek, explore the
CV model beyond the immediate task, and gain clarity around the
presentation of the static explanation. However, some interactive
mechanisms were at times overwhelming for users and introduced
new challenges, which informed the design recommendations we
present in this paper. Our exploration and study findings contribute
to our understanding of interactive mechanisms for XAI and bring
us closer to the design of effective interactive CV explanations.

2 Related Work

Given the increasing ubiquity of Al [32, 33, 53, 57, 79], there ex-
ists a growing need for end-users to understand a model’s behav-
ior so they can appropriately trust and use the model. To address
this need, many XAI methods have been developed over the past
decade across various subfields of Al, including CV and robot-
ics [17, 51, 58, 68, 71], and across different domains, such as health-
care and climate science [2, 3, 19, 52, 54-56, 78, 81]. Historically,
much work has focused on developing methods to explain a model’s
outputs (i.e., generating an answer for “why did the model make this
prediction?”). Recently, research has emerged at the intersection
of XAI and Human-Computer Interaction (HCI) on evaluating how
useful explanation methods are for users with varying machine
learning (ML) expertise [34, 40, 62, 64], which we build on for CV
explanations. In this section, we highlight literature most related
to our focus on interactive CV explanations.

2.1 Computer Vision Explanations

In this work, we focus on attribution-based explanations, which
compute a measure of importance by identifying the parts of an
input that are critical for a model’s decision [28, 59] and have been
the most developed in XAI research thus far. We discuss three
types of attribution-based explanations. Heatmap-based explana-
tions typically generate a temperature heatmap that indicates the
importance of each pixel or image region for the model’s predic-
tion [14, 27, 67, 71, 73, 74, 77, 93, 95]. Concept-based explanations
explain a model’s output by assigning a numerical importance
scores to semantic concepts (e.g., +2.7 for “wings”) [45, 70, 76, 97].
Prototype-based explanations learn a set of important image regions
(i.e., prototypes) from training images [16, 21, 37, 63, 66, 72].
Computer vision explanations have primarily been static. How-
ever, several studies have highlighted three main issues with static
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explanations. The first is information overload. Prior work has found
that the amount of information in explanations can be overwhelm-
ing. With heatmaps, users often want to view the “extremes” of a
heatmap and find intermediate colors distracting [10, 47, 91]. For
concepts, users report feeling overwhelmed by the number of items
[42, 69], often the number of annotated objects in a dataset (e.g.,
1197 in the Broden dataset [6]). Similarly, prototypes can require
many regions to explain a model well enough [38]. The second is a
semantic-pixel gap. Prior work suggests users often find it difficult
to connect image regions to the represented object and vice versa.
For concepts, users have difficulty identifying the concepts in the
images [69]. With heatmaps and prototypes, users struggle to dis-
cern what objects are in the highlighted regions [10, 42]. The third
is a limited means for user-driven exploration. Although attribution-
based explanations show what regions are important, they do not
explain why they are important [23, 59, 87]. Indeed, Kim et al. [42]
found that users wanted to know why certain regions were deemed
important by exploring the underlying causal relationships.

2.2 Interactivity and Explainable AI

While the problems presented could be partially mitigated by adjust-
ing the amount of information in the static explanation on a case-by-
case basis, interactivity has been identified as an effective [44, 82—
84] and customizable [82, 84] way for users to interact with and un-
derstand data [11, 92]. Much of the existing work in interactivity for
XAT has largely implemented interfaces that allow users to explore
images at the dataset level by filtering through data points based on
model predictions or their calculated similarity [7, 11, 22, 26, 30, 89].
Other work provides tools to examine the inner workings of models
(e.g., model weights and learned features) [15, 22, 24, 29, 31, 35, 90].
There is limited research on interactivity at the explanation level for
a single image. Some related work includes interactivity for textual
or tabular data [8, 9, 50, 80]. For example, Liu et al. [50] explore inter-
active explanations that rely on direct manipulation, such as sliders
and drop-down menus. However, they focus on comparing how
human-AI teams with interactive explanations perform compared to
Al-only agents when identifying out-of-distribution points. Within
computer vision, Nguyen et al. [65] develop an interface for human-
Al teams where users provide feedback on explanations. In contrast,
our work seeks to investigate how users leverage and perceive in-
teractive CV explanations and to provide design recommendations.

3 Explorative User Study

In this section, we describe the details of our IRB-approved study.

3.1 Study Method

3.1.1  Terminology. We tested three explanation types: heatmap-
based, concept-based, and prototype-based (i.e., the rows in fig. 1).
We created mock-up explanations, allowing us to carefully control
the presentation of explanations across participants. For each ex-
planation type, we created four presentation types: Static, Filtering,
Overlays, and Counterfactuals (i.e., the columns in fig. 1). The latter
three were interactive mechanisms inspired by the problems out-
lined in Section 2.1. An explanation is a pairing of one explanation
type and one presentation type (i.e., one cell in fig. 1).
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Figure 1: 12 explanation mock-ups for 3 explanation types (rows) and 4 presentation types (columns). All bird images were

from the Caltech-UCSD Birds-200-2011 dataset [88].

3.1.2  Setup. For the Static baseline (fig. 1, 1st col), we based our
mock-ups on prior works [16, 42, 73]. We then adapted them so that
they shared some uniform characteristics across presentation types.
First, we wanted all explanations to have a visual component, so we
used bar graphs instead of numerical scores in the concept version
(heatmap and prototype versions already had visual components),
similar to TCAV [39]. This design decision was also in line with
prior work, which reported that users dislike or feel overwhelmed
by the numerical coefficients [42]. Second, we wanted explana-
tions to describe an individual image (i.e., local explanation), not
an entire output class (i.e., global explanation) which in our case
was a bird species. Concept-based explanations are typically global,
as concepts may not appear in every image. Thus, we made local
concept-based explanations by crossing out concepts not present
via strikethrough [42].

Filtering (fig. 1, 2nd col) is a type of interactivity that allows
the user to conditionally remove information [25, 36, 75, 92]. We
utilized sliders that hide or show components of the explanation,
conditioned on their assigned importance [50]. In the concept and
prototype versions, the sliders remove or add concepts and proto-
types. In the heatmap version, we replaced the color gradient with
a binary mask that grows or shrinks as the slider is moved. We
chose this design because layering the mask on top of the color
gradient makes the underlying image difficult to see [42].

Overlays (fig. 1, 3rd col), described by Shneiderman as “details-
on-demand” [75], are extra layers of information [46] that appear
only when the user indicates that they want to view them [86].
We incorporate a hover-over that supplies the pixel locations or
the semantic labels of bird parts in the explanation, depending on
which is missing. When users hover over a heatmap or prototype
version, a dot appears on the closest bird part and a dialog box
below the explanation shows a textual label for that part. For the

concept version, when users hover over a concept in the bar chart
that is visible in the image (i.e., not crossed out), a dot representing
the concept’s location appears on the image.

Counterfactuals (fig. 1, 4th col) explain model predictions by
allowing the user to explore how changes to model inputs affect
model outputs [60]. Typically, static counterfactual explanations
show an edited image with the smallest modification needed to
change the model’s output prediction from one class to another
(e.g., how does an image need to change so that a model predicts
“Cardinal” instead of “Blue jay”?) [28, 85]. We utilize counterfactuals
as a form of interactivity by allowing users to edit an image and see
how the explanation and prediction subsequently change. Users
are provided with six drop-down menus that we refer to as “edit
options”. Each menu corresponds to a bird part and provides two
options for the attribute of that bird part: one is the original and
the other is a randomly selected alternative. For example, if the bird
has a red wing and the selected alternative is a blue wing, clicking
the menu for “wing” will display the options “red” and “blue”. If a
user selects the alternative attribute, the image updates to show the
edit, and the explanation updates when the edited image changes
it. Additionally, we include a dialog box that displays the model’s
prediction for the current image; this also updates if the edited
image changes the model’s prediction.

For each explanation, we chose a different image to mitigate
learning effects. We used a series of preprocessing steps and con-
sulted with two birding experts to select 12 images of similar dif-
ficulty in terms of bird identification and image quality. We per-
formed these checks to ensure some level of consistency across
images in terms of lighting, camera angle, or other factors. Addition-
ally, two CV experts (two authors) checked that the explanations
were of similar difficulty.
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3.1.3  Participants. We designed a within-subjects study and re-
cruited 24 participants with varying levels of ML and domain ex-
pertise (see Appendix A). We advertised our study through various
platforms, including several institutions’ email lists, birding labs,
online conservation and birding forums, X, and Mastodon. Due to
our snowball sampling process, all participants held an academic or
research affiliation. Studies were conducted over Zoom video calls
and lasted 90-100 minutes. All participants received a $25 gift card.

3.1.4  Procedure. Each participant tried all 12 explanations in Fig-
ure 1. We formed a balanced Latin square across the 3 explanation
types and randomized the presentation type ordering so that we
had 4 participants per ordering, one from each expertise category.
For each explanation, the participants explored and interacted with
the explanation mock-up in a web application and then provided
written answers to the survey questions (see Appendix B, images of
the interface are included in our supplementary material.). Specifi-
cally, participants were first asked to read the instructions and then
view and interact with the explanation. The instructions described
the explanation type and how to use the interactive mechanism
when it was present. The participant could choose when to pro-
ceed to the survey, though we enforced a time limit of roughly two
minutes. The survey questions asked participants to identify the
most and least important parts of a bird based on the explanation;
these tasks required participants to actively engage with each ex-
planation. All task questions included a reference to a bird part
guide that we created to assist with birding terminology. At the
end of the study, participants rated their level of agreement with
a set of statements and ranked the presentation types in terms of
their general preference and preference in the context of learning
about a new bird species, allowing for ties.

3.1.5 Analysis. We collected qualitative data from the study record-
ings and quantitative data from the survey questions. For our quali-
tative data, we created a codebook from the audio and video record-
ings of the studies and performed a Reflexive Thematic Analysis
[12, 13] to extract findings and outline recommendations. Some
codes directly came from verbal responses (e.g., “User prefers coun-
terfactuals for learning because exploration”), while other codes
described participant interactions (e.g., “User interacted with each
of the edit options individually”). Two authors created an initial
codebook based on four studies; one of those authors coded the
remaining studies. All authors iterated on the codebook. Since one
author coded all the studies and refined the codebook in agreement
with the other authors, we did not calculate inter-rater reliability.

3.2 Study Results

We present the quantitative results from the surveys followed by the
themes from our qualitative analysis of the interviews, summarize
the takeaways, and offer design recommendations.

3.2.1 Questionnaire Results. After viewing all 12 explanations, par-
ticipants rated a set of statements (see Appendix B) on a 5-point
Likert scale and ranked the four presentation types. Lower numbers
indicate better ratings (fig. 2). For the analysis, we used a two-sided
Wilcoxon signed-rank test with Holm correction; we used Holm
to avoid assuming independence. Participants rated Counterfactu-
als as having significantly more information compared to Static,
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Filtering, and Overlays (p < .01). Participants rated Filtering as
having significantly more information than Static (p = .015). 4
participants noted that while Filtering provided more information
than Static, the additional information was not overwhelming. For
connecting pixel-level information to semantic-level information,
participants rated Overlays as significantly less difficult than Static,
Filtering, and Counterfactuals (p < .01). There were no significant
differences in ratings for the model understanding statement. In
general, participants preferred Overlays significantly more than
Static (p < .01) and Counterfactuals (p = .02). For learning about
bird species, participants preferred Overlays significantly more
than Static presentations (p < .01).

3.22 Qualitative Results. Here, we discuss the qualitative themes
we developed. Parentheses indicate the number of participants.

Participants appreciate interactive mechanisms that augment
the explanation without changing the underlying explana-
tion. Participants appreciated Filtering and Overlays as tools for
adjusting the amount of detail in the explanation without chang-
ing the explanation itself. Specifically, participants mentioned that
Filtering made explanations less overwhelming by giving them
control over the amount of visible information (12) and this control
in turn made explanations easier to digest (4). Participants also
used this interactive mechanism to reduce the amount of informa-
tion (8) or gradually add information (7) during the task. Similarly,
participants liked Overlays (18) despite the additional information
presented. For example, P2 said: “[Overlays have] more information
than [Static], but I feel like the way they’re presented makes it so that
you can take it in easier, and it doesn’t feel like more information”. On
the other hand, participants found Counterfactuals overwhelming
(12), as image edits altered the underlying explanations.

Average participant ratings

Too much ¢ H W S: Static
information ¢ [T S
F: Filtering
Difficult to S O: Overlays
connect 2 [l C: Counterfactuals
* p<.05
Difficult to whe ot

S
F
R ——
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Figure 2: Average participant ratings for survey statements.
Lower is better. Error bars are 95% confidence intervals.

Average participant rankings W S: Static

General §ﬁ—‘ I, F: Filtering
preference ? : O: Overlays

M C: Counterfactuals
Preferen_ceg I * p<.05
for learming . "*p<.01
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Figure 3: Average participant rankings for general preference
and preference for learning bird species. Ties are allowed.
Lower is better. Error bars are 95% confidence intervals.
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Participants find interactive mechanisms that alter the under-
lying explanation overwhelming. Participants found that Coun-
terfactuals were overwhelming because there could be simultaneous
changes in the explanation when the image was modified. Addition-
ally, they struggled to untangle the causal relationships because
the inputs were interdependent (11). P6 commented that “In my
mind, it’s hard to reason about the combination of influences”, and P2
stated for the prototypes version that they “think there’s too much
going on with the photo editing and the [prototypes] popping out”. In
fact, participants often performed one edit at a time, making sure to
revert each edit option to the default choice before trying another
(61 out of 72 Counterfactuals trials). Moreover, participants had
to explore a large number of possible explanations that resulted
from the 64 possible edited images (9). P7 remarked: “There were so
many things to look at—it was confusing”. Overall, participants found
Counterfactuals confusing and hard to interpret (12), particularly
those with low ML and domain expertise (5), and needed more time
to explore the space of possible inputs and the resulting outputs (6).

Although participants find Counterfactuals overwhelming,
they utilize them to resolve confusion around static presenta-
tions by inducing systematic changes in model predictions and
explanations. Participants leveraged Counterfactuals to clarify as-
pects of static explanations they found confusing and to confirm
their understanding of the explanations. For example, many par-
ticipants were confused about static concept-based explanations
(16), and some used Counterfactuals to edit the image and observe
the resulting changes in the model’s prediction and explanation to
clarify their understanding, which ultimately led to a more accu-
rate interpretation of the static explanation (6). P17 noted: “It was
helpful to be able to change the color of [a bird part] and see how that
affected the bar graph...that sort of helped me understand what the
[strikethrough] is for”. Additionally, the visual changes helped par-
ticipants identify the bird parts (15). Hohman et al. observed similar
behaviors where “...participants used Counterfactuals often through-
out their exploration, both as a direct task and as a sanity check for
feature sensitivity” in their study with ML practitioners [30].

Participants leverage Counterfactuals to explore a range of
explanations to better understand the AI model more broadly
and beyond the task at hand. Many participants (20) found Coun-
terfactuals useful for understanding the Al model’s reasoning at
a high level. Some participants expressed a desire to use Counter-
factuals to explore other birds outside of the one image given and
to build a macroscopic understanding of the Al model. Specifically,
participants appreciated the ability to change the bird species by
editing the image (6). This ability to explore allowed participants
to develop an understanding of the model more broadly. For exam-
ple, P15 thought it helped them build rules about how changes in
the model’s input affect its output, and P18 noted that this mecha-
nism would allow them to identify the decision points of the model.
These uses were beyond the scope of the tasks which only asked
for the most and least important bird parts in the given image. This
suggests that participants saw Counterfactuals as a source of in-
formation to explore and expand their understanding of the model,
even if they were not asked to do so.

Participants felt that Filtering and Overlays allowed them
to quickly focus on information of interest. Some participants
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appreciated that Filtering automatically sorted the bird parts by
importance (e.g., similarity scores sorted by magnitude in prototype-
based explanations) because it obviated the need for manual com-
parison (6). For instance, P6 liked the prototype version of Filtering
because “it produces a ranking of the similarity scores that I don’t
need to think about myself”. Similarly, participants found Overlays
useful for easily and quickly identifying the names of the bird parts,
even with the bird part guide provided (8). For example, P21 re-
marked that Overlays were “faster because I could hover over it and
it could tell me what the parts were”. Thus, participants felt that the
automatic sorting and labeling offered by Filtering and Overlays
respectively enabled them to efficiently hone in on the information
that they were seeking. Participants noted that the lack of these
features in Static presentations was inconvenient (5).

3.2.3  Summary. Participants found that interactive features aug-
menting explanations, such as Filtering and Overlays, helped them
understand information without being overwhelming. While Coun-
terfactuals introduced significant visual changes by altering the
underlying explanations, participants used them to clarify confus-
ing aspects of static explanations, reaffirm their understanding, and
explore the Al model more broadly. With Filtering and Overlays,
participants felt they could quickly focus on relevant information,
and they appreciated the flexibility that these mechanisms offered
when interpreting explanations.

3.24 Design Recommendations. Participants expressed that inter-
active mechanisms were at times confusing or inconvenient. Based
on these findings, we recommend the following design considera-
tions for future work on interactive CV explanations.

Avoid interdependent input controls. Participants found Coun-
terfactuals confusing because they could not disentangle the effects
of multiple simultaneous edits on the prediction or the explanation.
A more appropriate design might involve preventing users from per-
forming more than one edit at a time, thereby clarifying the causal
relationship between each input and the corresponding changes.

Constrain the input and output space. With Counterfactuals,
many participants felt overwhelmed by the number of possible im-
age edits and the extent of changes to the explanation. We suggest
limiting the input and output space to create a manageable range
of information, tailored to the application, allowing participants to
easily explore all.

Design an optimal static default view. We recommend that users
should have the option to choose whether or not to engage with
interactive mechanisms. Therefore, the default static presentation
should provide enough information for the initial interpretation of
the explanation without overwhelming users [69].

4 Limitations

Our study is a preliminary step toward evaluating interactive CV
explanations and thus has several limitations. For example, our
study sessions were relatively short, with participants only hav-
ing two minutes to explore each explanation. Some participants
expressed a desire for more time, suggesting the need for future
studies to explore deeper engagement with interactive mechanisms
for CV explanations. Additionally, longitudinal studies are needed
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to understand how users interact across repeated sessions and the
role of interactive mechanisms that maintain user history.

We chose a simple bird identification task, which was a rea-
sonable starting point, because it was consistent with prior work
[42, 43, 61] and allowed us to recruit participants with low and high
domain expertise. However, it is unclear to what extent our findings
can be generalized to more complex, high-risk, and high-impact
applications such as medical diagnostics. Moreover, our sample size
was relatively small, underscoring the need for larger-scale studies.
Lastly, our interactive mechanisms were not directly comparable to
the static explanations. For example, the Filtering mechanism for
heatmap-based explanations lacked the color gradient present in
its static counterpart. Carefully controlled experiments are needed
for quantitative analysis of performance, trust, and confidence in
tasks using various interactive computer vision explanations.

5 Future Work

Future research should explore a broader range of interactive mech-
anisms for CV explanations beyond the three examined in this
work. Additionally, some participants suggested integrating infor-
mation beyond the image, such as geographical context or general
facts, to improve the utility of explanations. Further work is needed
to define the boundaries of what information should be included
in interactive explanations across different application domains.
Collaborating with domain experts and stakeholders through par-
ticipatory design will be critical for advancing these directions.
Finally, prior work has shown that explanations may lead to
misplaced trust in Al systems [4, 18, 40, 41, 94]. Interactivity in ex-
planations could amplify these risks, further misleading users and
enabling confirmation bias. For example, users might iteratively
interact with Counterfactuals until the explanations appear to align
with their preconceptions. More research is needed to carefully ex-
amine these possibilities and mitigate potential negative outcomes.

6 Conclusion

Most computer vision explanations are static, limiting user inter-
action. Drawing from prior XAl research, we identified three key
issues with these explanations: information overload, a semantic-
pixel gap, and limited means for user-driven exploration. Given
the potential of interactivity in XAI, we explored how users en-
gage with and perceive interactive explanations by comparing three
mechanisms across three explanation types. We conducted a study
with 24 participants of varying ML and domain expertise. Our find-
ings showed that interactivity helps address the challenges of static
explanations by offering users greater control and quicker access
to relevant information. While some mechanisms were overwhelm-
ing, they allowed users to expand their understanding of the model
and refine their grasp of the static explanation itself. Based on
these insights, we offered design recommendations for interactive
computer vision explanations, including optimized default views,
independent input controls, and constrained interaction spaces.
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Appendix
A Expertise Criteria and Distribution

We recruited 6 participants from each of the following 4 cate-
gories: high-ML and high-domain (HM-HD), high-ML and low-domain
(HM-LD), low-ML and high-domain (LM-HD), and low-ML and low-
domain (LM-LD). Participants rated their familiarity with ML and
the task domain of birding on a 5-point scale, and were considered
to have high or low expertise based on their responses:

o LM: “I:Idon’t know anything about ML”, “2: I have heard about
a few ML concepts or applications”, or “3: I know the basics of
ML and can hold a short conversation about it.”

e HM: “4: I have taken a course on ML and/or have experience
working with an ML system” or “5: I often use and study ML.”

o LD: “I:Idon’t know anything about birding”, “2: I have heard
about a few birding concepts”, or “3: I know the basics of birding
and can hold a short conversation about it.”

® HD: “4: I have taken a course on birding and/or have experience
in birding” or “5: I often conduct bird-watching and study
birding.”

Specifically, the distribution of participants was as follows:

e LM-HD included P11, P12, P15, P16, P19, and P21.
e HM-HD included P10, P14, P17, P18, P23, and P24.
e HM-LD included P3, P4, P6, P8, P13, and P20.

e LM-LD included P1, P2, P5, P7, P9, and P22.

B Survey Questions

Q1. Rate your agreement with the following statements on a 5-point
scale from 1 (strongly disagree) to 5 (strongly agree):

(1) It was difficult to read the explanation.

CHI EA ’25, April 26-May 1, 2025, Yokohama, Japan

(2) There was too much information provided.
(3) It was difficult to connect the explanation to parts of the
photo.

Q2. Based on the labels in the table, rank your preference of the fol-
lowing four groups of explanation designs (1 being most preferred
and 4 being least preferred) and verbally explain your thought pro-
cess. The labels were W, X, Y, and Z with each letter representing
Static, Filtering, Overlays, and Counterfactuals respectively.

Q3. Let’s say that you needed to learn about a new bird species. Rank
how useful the four groups of explanation designs would be for
doing so (1 being most useful and 4 being least useful) and verbally
explain your thought process. As with Q2, the labels were W, X, Y,
and Z with each letter representing Static, Filtering, Overlays, and
Counterfactuals respectively.
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